
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Training of Binary-Ternary Neural Networks

Viktor Nezveda

Supervisor: doc. Ing. Tomáš Pevný, Ph.D.
May 2024

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

507345 Personal ID number: Nezveda Viktor Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Training of Binary-Ternary Neural Networks

Bachelor’s thesis title in Czech:

Učení binárních-ternárních neuronových sítí

Guidelines:

Neural networks with binary activations and ternary weights can be represented as a large set of logical rules, which makes
them appealing for explanation of neural networks and understanding their inner workings. Since their training is difficult
due to absence of informative gradient, there is not a single established method. The work investigates different strategies
to training and compares them.
Instructions:
1. Learn about training of normal neural networks.
2. Read the prior art about training of binary neural networks.
3. Implemented methods based on straight-through gradient, sampling, and regularization.
4. Compare the convergence of implemented methods on few problems.

Bibliography / sources:

[1] Courbariaux, Matthieu, et al. "Binarized neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).
[2] Alizadeh, Milad, et al. "An empirical study of binary neural networks' optimisation." International conference on learning
representations. 2018.
[3] Deng, Lei, et al. "GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision
memory under a unified discretization framework." Neural Networks 100 (2018): 49-58.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomáš Pevný, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 24.05.2024 Date of bachelor’s thesis assignment: 16.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Dr. Ing. Jan Kybic

Head of department’s signature
doc. Ing. Tomáš Pevný, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor, doc.
Ing. Tomáš Pevný, Ph.D., for his excep-
tional guidance and support throughout
my bachelor’s thesis journey. His exper-
tise, consistency, and patience were cru-
cial in shaping both my research and my
personal growth. He will remain an in-
spiration for my future endeavors, both
academically and personally.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all the sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 24, 2024

Viktor Nezveda

v

Abstract
Neural networks are powerful tools for
solving complex problems, but their in-
ner workings often remain incomprehen-
sible to humans. In this thesis, we for-
mulate a novel type of neural network
called "binary-ternary" neural network,
characterized by ternary weights and bi-
nary activation function. This model of-
fers distinct advantages over traditional
neural networks, such as the ability to be
fully represented as a series of logical rules,
which ultimately makes the output of the
network more understandable. However,
the process of training binary-ternary net-
works brings forth a new set of challenges
such as non-informativeness of gradients
and discrete weight space, uncommon for
conventional deep nets. In this thesis, we
describe and compare the results of three
distinct methods that try to circumvent
these problems, thereby enabling an effec-
tive training.

Keywords: machine learning, neural
networks, optimization, ternary weights,
binary activation function

Supervisor: doc. Ing. Tomáš Pevný,
Ph.D.
Resslova 307/9
120 00 Praha 2

Abstrakt
Neuronové sítě jsou užitečné nástroje pro
efektivní řešení rozličných problémů. Jed-
nou z jejich hlavních nevýhod je však to,
že jsou pro člověka často nepřehledné a
jejich závěry neodůvodněné. V této práci
formulujeme specifický tip neuronových
sítí, tzv. binární-ternární sítě, které se vy-
značují ternárními vahami a binárními
aktivačními funkcemi. Tento model na-
bízí několik výhod oproti tradičním neu-
ronovým sítím, například schopnost být
plně reprezentován jako soubor logických
pravidel, což zpřehledňuje jeho výstupy
a umožňuje tak lidem hlubší pochopení.
Proces trénování binárních-ternárních sítí
však přináší problémy netipické pro tra-
diční hluboké sítě, jako neinformativnost
gradientů a diskrétní váhový prostor. V
této práci popisujeme a porovnáváme tři
rozdílné metody, které se snaží těmto pro-
blémům předcházet a umožňují tak efek-
tivní trénování binárních-ternárních sítí.

Klíčová slova: strojové učení,
neuronové sítě, optimalizace, ternární
váhy, binární aktivační funkce

Překlad názvu: Učení
binárních-ternárních neuronových sítí

vi

Contents
1 Introduction 1
1.1 Definition of Binary-Ternary

Neural Network 2
2 Background 3
2.1 The Binary Sign Function 3
2.2 The Hyperbolic Tangent Function 3
2.3 Batch Normalization 5
3 Converting to Logical Expressions 7
3.1 Single Neuron to Logic 7
3.2 Generalization for the whole

Network . 8
3.3 Data Quantization 9
4 Training and its Challenges 11
5 Deterministic Straight Through
Estimator 13
5.1 Quantizing the Weights and the

Output . 13
5.2 Computing Gradients 14
6 Stochastic Straight Through
Estimator 17
6.1 Bernoulli Distribution 17
6.2 Obtaining the Ternary Weights . 17
6.3 Binarizing the Output 18
7 Regularization 21
7.1 The Objective Function 22
7.2 The Regularizer Functions 22
7.3 The Nearest Solution Distance
(NSD) . 22

7.4 Weight Regularizer 24
7.5 Activation Regularizer 24
7.6 Regularizer Strength Schedule . . 24
7.7 Implementation of a Schedule . . 25
7.8 Conversion to Discrete 26
8 Experimentation Section 29
8.1 Datasets . 29
8.2 Training Details 29
8.3 Comparing the Results 30
9 Conclusion 31
Bibliography 33

vii

Figures
2.1 Possible activation functions, H(x)

represents the Heaviside step
function. 4

2.2 Graph of the tanh(x) and its
derivative. Note that for larger (or
lower) x the gradient approaches 0,
making it non-informative. This
phenomenon is called the "vanishing
gradient problem". 4

2.3 Graph of the tanh(αx) for different
alphas and the sign function. 5

2.4 The graph shows the immense
impact of the ordering of the batch
normalization and the activation
functions (denoted as bn and σ
respectively). Even if we were to
disregard the constraint of
binary-ternary model and apply bath
normalization on top of the signb as
the activation, we would still get
suboptimal results. The activation
function in this case is signb, and a is
the preactivation of the neuron,
a = ∑n

i=0 wixi + b. 6

4.1 This figure shows the enormous
drop in accuracy that makes the
trivial approach of training
binary-ternary networks
inapplicable. 11

5.1 Quantizer function with t1 = −0.5
and t2 = 0.5. 13

5.2 Quantizer functions and the
derivatives that we assigned to them.
The quantizer function has t1 = −0.9
and t2 = 0.5 . 15

6.1 The graph of F and the logistic
sigmoid function. 19

7.1 Plots of the NSD function for
different target sets K. 23

7.2 Plots of the NSD function raised to
a power p for different target sets K. 23

7.3 Example of an implementation of
the schedule during training. Note
that we can artificially set the
minimum and maximum values for
each strength, thus manipulating
what the minimization algorithm
should focus on. We can also choose
whether we will update the λs at
all. 25

7.4 Results of threshold optimization,
where t1 = −t2. Note that the
threshold values were originally set to
±0.5, thus this maximization had
nonnegligible impact of 2 percent
increase in accuracy. 27

viii

Tables
8.1 Results of the proposed methods

applied on the three datasets. . . . 30

ix

Chapter 1
Introduction

Over the past decade, neural networks have demonstrated their effectiveness
across a wide range of problems and their usage has been becoming ever more
popular, however, they still do suffer from some major disadvantages.

A fundamental problem with traditional networks is their inability to clarify
any of the results that they forward. Such a network is essentially a black box
since its inner parameter configuration is very hard for humans to grasp. This
characteristic makes it virtually impossible for a neural network to be used
in areas where humans cannot depend on the vague arguments of machines
and an explicit explanation is needed. Fields where human accountability for
decisions is high, such as in legal proceedings or medical diagnoses, demand
a level of transparency that traditional neural networks struggle to provide.

For that reason, we propose a solution in the form of a binary-ternary
network that offers interesting edges over traditional approaches. These
networks are constrained to have ternary weights and binary activation
functions, which allows them to be fully rewritten as a series of straightforward
True or False propositions. Consequently, they can be compressed into a set
of logical rules that are much more tangible and comprehensible to human
understanding.

Another drawback of traditional networks is that they do require a lot of
memory and computational power, since one model can have as many as
tens of thousands of neurons. The complexity of such networks makes them
quite demanding to be used on resource-limited hardware such as cameras
or phones. The binary-ternary networks grant a resolution to this issue as
they radically reduce memory usage since they are replacing 32-bit floating
point parameters with ternary ones. They also allow a 58× improvement in
compute-time by replacing full-precision operations with cheap binary ones
[1].

1

1. Introduction
1.1 Definition of Binary-Ternary Neural Network

A "binary-ternary neural network" is a network whose layers have these
following properties:. all weights are ternary;

∀i, j ∈ N; i ≤ n, j ≤ m : wij ∈ {−1; 0; 1}

. the activation function has a binary range;

σ : R → {−1; 1}

Note that this definition does not constraint the bias term, therefore it can
be any real number.

2

Chapter 2
Background

2.1 The Binary Sign Function

Since the second condition of the binary-ternary layer requires the activation
function to output only binary values, we can define it as:

σ(x) =
{

1 x ∈ I
−1 x ∈ R \ I

(2.1)

where I ⊆ R. To make the training process more efficient, we will restrict I
to be an interval [s; ∞), where s is a parameter, that quantifies the shift of
the activation function.

σ(x) = σ((
n∑

i=0
wixi + b) − s) = σ(

n∑
i=0

wixi + (b − s))

Note that both the bias term of the neuron b and s fulfill the same role in
the output equation, which effectively makes them equivalent. Therefore, to
simplify the model, we can set s to zero without loss of generality.

This modification of the interval I creates a new activation function that
greatly resembles the sign function. We will define it as the "binary sign" and
denote it as "signb".

signb(x) =
{

1 x ∈ [0; ∞)
−1 x ∈ (−∞; 0)

(2.2)

Instead of being exclusively {-1; 1}, the binary range of the activation
function could also be {0; 1}, thus allowing for the usage of the Heaviside
step function instead of sign. However, the Heaviside step function does not
offer any advantages over the sign, and during implementation seems to be
an unpromising choice.

2.2 The Hyperbolic Tangent Function

In this section, we’ll highlight the benefits of using the tanh function. In
our case, the hyperbolic tangent is a crucial component for all the methods

3

2. Background

−1 −0.5 0.5 1

−1

1

x

sign(x)

−1 −0.5 0.5 1

0.5

1

x

H(x)

Figure 2.1: Possible activation functions, H(x) represents the Heaviside step
function.

discussed in this thesis, as it can be used as a non-linear activation function
or a regularizer (more on this in the paragraph focused on regularization). Its
desired attributes are differentiability on the whole domain and informative-
ness of its gradient. The hyperbolic tangent does suffer from the vanishing

−6 −4 −2 2 4 6

−1

1

x

tanh(x)

tanh(x)
d

dx tanh(x)

Figure 2.2: Graph of the tanh(x) and its derivative. Note that for larger (or
lower) x the gradient approaches 0, making it non-informative. This phenomenon
is called the "vanishing gradient problem".

gradient issue, characterized by the fact that the derivative of the function
approaches 0 as |x| increases. However, this characteristic is not crucial for
our task, since we are not going to input as large values for x. This is due
the fact that we will change the order in which we apply the activation and
batch normalization, thus lowering the magnitude of the input values for tanh
(more on this in the section about batch normalization).

Another critical feature of tanh is the fact, that it is strictly monotonous
and bounded, hence there exists a finite limit on both ends.

lim
x→±∞

tanh(x) = ±1

Using this property of tanh, we can derive that it approaches sign when a
parameter that multiplies the argument increases. This is expressed in the
following lemma:

4

................................. 2.3. Batch Normalization

−1 −0.5 0.5 1

−1

1

x

tanh(x)

α = 1.0
α = 2.0
α = 4.0
α = 10.0
sign(x)

Figure 2.3: Graph of the tanh(αx) for different alphas and the sign function.

∀x ∈ R : lim
α→∞

tanh(αx) = sign(x)

The fact that this identity holds, essentially makes the hyperbolic tangent
a relaxed version of the sign function, which positions it to be the perfect
candidate when trying to regularize sign.

2.3 Batch Normalization

The batch normalization is a well known technique that greatly improves the
performance and stability of neural networks. It achieves that by normalizing
the output of a neuron with respect to the expectation and variance obtained
from a mini-batch. It then scales the output by applying some trainable
parameters.

The conventional approach is to apply the batch normalization function
after the neuron’s activation function. However, this will not work for
any binary-ternary layer, since this would render the output of the neuron
continuous rather than binary, thereby violating the given constraint.

Therefore, we will strictly apply batch normalization to the preactivation,
rather than after it.

f(x) = σ ◦ bn(
n∑

i=0
wixi + b)

5

2. Background

Figure 2.4: The graph shows the immense impact of the ordering of the batch
normalization and the activation functions (denoted as bn and σ respectively).
Even if we were to disregard the constraint of binary-ternary model and apply
bath normalization on top of the signb as the activation, we would still get
suboptimal results. The activation function in this case is signb, and a is the
preactivation of the neuron, a =

∑n
i=0 wixi + b.

6

Chapter 3
Converting to Logical Expressions

In this section, we will demonstrate that the proposed binary-ternary neural
network can indeed be fully transformed into an equivalent set of logical
expressions. We begin by showing that it is possible for a single neuron, and
then we will generalize it for the entire network.

3.1 Single Neuron to Logic

The output function of the binary-ternary neuron is defined as:

f(x) = σ(
n∑

i=0
wixi + b)

where σ is the binary activation function, w is a vector of ternary weights,
and b is the bias. For the procedure to work, we also demand the input x to
be binary.

In the context of this thesis, we will solely focus on using the sign function
as the activation.

f(x) = sign(
n∑

i=0
wixi + b)

Since the sign function returns 1 for positive inputs and −1 for negative ones,
we can split the output function into two intervals:

f(x) =
{

1 ∑n
i=0 wixi + b ≥ 0

−1 ∑n
i=0 wixi + b < 0

(3.1)

This adjustment allows us to determine the output of the neuron by only
knowing whether the following inequality holds.

n∑
i=0

wixi ≥ −b

Notice that if a weight wi is equal to 0, it does not affect the total of the
sum nor the truthfulness of the inequality. Therefore, we do not have to
consider any zero-valued weights.

7

3. Converting to Logical Expressions............................
Since both the input xi and any non-zero weight wi are binary (either 1 or

-1), their product must be also binary. Specifically, their product will be 1 if
both factors have the same sign and -1 if they do not. We can rewrite the
sum by taking advantage of the Iverson bracket function denoted as J.K, that
outputs 1 if the condition inside is true and 0 otherwise.

n∑
i=0

(Jwi = xiK − Jwi ̸= xiK) ≥ −b

n∑
i=0

Jwi = xiK −
n∑
i

Jwi ̸= xiK ≥ −b

Afterwards, we will denote N as the sum of all non-zero weights and M as
the sum of weights that are equal to their respective inputs.

N =
n∑

i=0
Jwi ̸= 0K

M =
n∑

i=0
Jwi = xiK

Subsequently, by substituting N and M (using the fact that ∑n
i Jwi ̸= xiK =

N − M) to the previous inequality, we obtain the final solution.

M − (N − M) ≥ −b

M ≥ N − b

2

Since the product of the non-zero weight wi and the input xi can be
interpreted as the logical equivalence (wi ⇐⇒ xi), and the output of the
neuron solely depends on how many of these expressions are true, we can
represent the neuron as a set of these expressions, where it activates (outputs
1) when a certain number of the equivalences hold. Specifically, at least
N−b

2 of the total N of them must be true. This "m of n" formulation of the
problem can be then represented as a disjunction of conjunctions, thus finally
transforming the neuron to a logical single term.

For the purposes of this thesis, it is sufficient that a solution indeed exists,
but we will not delve in to the problematics of the transformation. This topic
is described in more detail in [3].

3.2 Generalization for the whole Network

We have successfully demonstrated that a neuron indeed can be rewritten as a
logical expression. The next step is to determine whether this representation
generalizes for the entire model. If we assume that the input of the whole
network is binary, we can deduce that the first layer can be transformed to
logic using the previously described approach. From there, we can cascade

8

.................................. 3.3. Data Quantization

this procedure through subsequent layers, ultimately applying it on the whole
network.

This shows that a binary-ternary model, with binary input data can be
successfully converted to logical expressions.

3.3 Data Quantization

As we established in the previous section, for us to be able to successfully
convert a binary-ternary network to a set of logical expressions, we need all
the input data to be binary. We can achieve that by applying an embedding
function on the datasets beforehand, thus transforming the data to the desired
from.

The quantization function that we chose firstly creates k number of bins
and randomly initialized vector b ∈ Rk. For each value of each feature xr ∈ R
of the given data, it then evaluates the following:

xq = signb(

xr − b1
xr − b2

...
xr − bk

)

where signb is applied element vise, and xq ∈ {−1; 1}k is the desired quantized
feature.

Note that this embedding increases the dimension of the dataset by the
factor of k, however it does convey less information than the original features.

9

10

Chapter 4
Training and its Challenges

The initial approach when attempting to create and train a binary-ternary
neural network is to treat it as a traditional (continuous) network without
any constraints and train it accordingly. Then, after the training is complete,
simply convert it to the desired discrete form by rounding the weights to their
nearest ternary values and replacing the activations with the sign function.
However, this trivial inapplicable, since there is no inherit connection between
the continuous and discrete models, and the conversion between the two is
therefore quite drastic, leading to an immense drop in accuracy.

Figure 4.1: This figure shows the enormous drop in accuracy that makes the
trivial approach of training binary-ternary networks inapplicable.

Since the trivial approach does not work, we need to develop more sophis-
ticated techniques for training binary-ternary networks. In this thesis, we
compare three distinct approaches, each designed to address the challenges of
training binary-ternary networks in a unique manner.

The first issue, which all of our methods must combat, arises from the
discrete nature of the weight space. Since the parameters of the network
are not continuous, the loss function with respect to the weights is non-

11

4. Training and its Challenges...............................
differentiable, which makes the use of gradient-based optimization methods
impossible.

The subsequent problem we must face is the fact that the activation function
must be the sign function, which has certain undesirable properties. Although
it is differentiable on almost the whole domain (besides x = 0), the gradient
that we obtain is consistently 0 and thus non-informative. Therefore, any
loss minimization method such as gradient descent will inevitably fail as it
does not possess any information about where to descend.

These problems pose a grave obstacle to the training process, and all of
our methods must address them both.

12

Chapter 5
Deterministic Straight Through Estimator

This method consists of two main components, each addressing specific
problem of training binary-ternary neural networks.

Firstly, the straight-through approach addresses the discrete weight space
issue by introducing a set of full-precision (continuous) parameters, from
which are the actual ternary weights then derived. These real parameters
work as proxies for the ternary weights during training, thus enabling the use
of gradient-based optimization methods.

To deal with the non-informativeness of the gradients, the deterministic
straight through estimator (DSTE) method substitutes the derivatives of
the problematic functions with artificially fabricated, more informative ones.
Although this replacement is not mathematically sound, it does enhance
training.

5.1 Quantizing the Weights and the Output

The first step to successfully implementing the DSTE method is to create a
function that will convert the continuous weights to ternary ones. We will
refer to this function as "quantizer" and denote it as quant:

−1 −0.5 0.5 1

−1

1

x

quant(x)

Figure 5.1: Quantizer function with t1 = −0.5 and t2 = 0.5.

quant(x) =

−1 x < t1

0 t1 ≤ x ≤ t2

1 x < t2

(5.1)

13

5. Deterministic Straight Through Estimator
where t1 and t2 (t1 ≤ t2) are parameters that work as thresholds and can be
learned during training or can be set to certain values beforehand. As long
as we set the thresholds symmetrically, the exact value should not matter,
since the network will adapt to it. We chose the thresholds to be t1,2 = ±0.5.

Notice that if we set both t1 and t2 to 0 we obtain the sign function (or
shifted sign(x − s) if we swap 0 for some s ∈ R). If we were to use the sign
function as the quantizer, we would lose the ability to have 0 as a possible
weight, thus leading to lower accuracy.

We can then create a set of full-precision parameters denoted as θ, and use
the quantizer as a converter between continuous and discrete weights:

W = quant(θ)

where W are the ternary weights used during evaluation, and θ represents
the continuous weights with respect to which we minimize the loss function
during training. Note that the quant function must be applied element wise,
so that the output W is a matrix of the same dimensions as θ.

The definition of binary-ternary networks also requires the output of
all neurons to be binary. The DSTE method addresses this constraint by
quantizing the output by applying the signb function on top of the activation
function. If we were to replace the activation function with the signb entirely,
we would remove all non-linearity from the network, thus radically reducing
its potential and lowering its accuracy.

By applying these two quantizers we obtain new neuron output function
with binary output and ternary weights, thus satisfying the constraints of
binary-ternary networks:

f(x) = signb ◦ σ(
n∑

i=0
quant(θ)ixi + b)

5.2 Computing Gradients

The other problem that this approach must confront is the non-informative
gradient of the signb and quantizer functions. To address this, the method
opts to change these functions during the backpropagation phase to ones
that do possess an informative gradient. In our case, we will substitute these
functions with identity, whose derivative is always equal to 1.

d

dx
signb(x) := 1

d

dx
quant(x) := 1

Using these substitutions and the fact, that the ternary weights are obtained
by applying the quantizer, we can derive that the partial derivative of W
with respect to θ is equal to 1:

∂W

∂θ
= 1

14

................................. 5.2. Computing Gradients

−1 −0.5 0.5 1

−1

1

x

signb(x)

signb(x)
d

dxsignb(x)

−1 −0.5 0.5 1

−1

1

x

quant(x)

quant(x)
d

dxquant(x)

Figure 5.2: Quantizer functions and the derivatives that we assigned to them.
The quantizer function has t1 = −0.9 and t2 = 0.5

This can be then used to compute the relationship between the gradient of
the loss function with respect to the continuous and the ternary weights:

∂L
∂θ

= ∂L
∂W

1

This newly obtained relation enables us to train the network as we would
normally do, utilizing the standard optimization techniques.

15

16

Chapter 6
Stochastic Straight Through Estimator

This approach combats the training problems posed by the formulation
of binary-ternary neural networks in a manner similar to its deterministic
counterpart. It likewise tries to render the weight space continuous to allow the
use of gradient-based optimization during training. However, the stochastic
straight through estimator (SSTE) differentiates itself in the method it uses
to derive the ternary weights and the binary output of the neuron. Rather
than being exact, it opts to acquire the discrete values by sampling from
a probability distribution whose parameters are based on the full-precision
weights of the network. This adjustment allows for the usage of standard
optimization techniques, since the parameter space with respect to which we
minimize the loss function is continuous rather than discrete.

We will use the results from [6] where a similar method was introduced,
with the exception that they were using binary weights rather than ternary
ones.

6.1 Bernoulli Distribution

In this thesis, we chose to use the Bernoulli distribution as the sampler, since
it is the perfect candidate for deriving discrete values from continuous ones.
This distribution is characterized by a parameter p ∈ [0; 1], where the random
variable sampled from it, x ∼ Bernoulli(p), takes the value 1 with probability
p and 0 with probability 1 − p.

6.2 Obtaining the Ternary Weights

Since the context of binary-ternary neural networks allows us to use ternary
weights, but the possible output of a Bernoulli distribution is only binary
(either 1 or 0), we need to modify it to fully utilize the available weight space.
We also want the output of the distribution to maintain consistency with the
sign of the input, meaning that for a positive input, it will never output -1 as
the value for the ternary weight or the other way around.

To successfully sample the ternary weights, we first must compress the
full-precision weight space to the interval [−1; 1] by applying the hyperbolic

17

6. Stochastic Straight Through Estimator
tangent function to it, obtaining the bounded weights ω.

ω = tanh(θ)

We will then let the absolute value of ω to function as the probability p in
the context of the Bernoulli distribution. However, such a setup would only
sample values 0 or 1, entirely neglecting -1 as an option. Therefore, we also
have to multiply the result by sign(ω) to allow for the output of -1. These
adjustments lead us to the following formula:

w ∼ Bernoulli(|ω|)sign(ω)
where w is the desired ternary weight.

During backpropagation we will set the gradient of the Bernoulli distribution
to an artificial value as we did in the DSTE method.

∂L
∂ω

:= ∂L
∂w

6.3 Binarizing the Output

Since the Bernoulli distribution is inherently binary, the process of sampling
binary values from it is simpler than trying to obtain ternary ones, as we did
in the previous section. In this thesis, we solely focus on activation functions
whose range is {-1;1}, thus we need to map the output of the Bernoulli
distribution {0;1} to the desired ±1 range. We can achieve that by applying
these simple operations:

b ∈ {−1; 1} ∼ 2Bernoulli(p) − 1

where b is some binary output, and p ∈ [0; 1] is the parameter of the distribu-
tion.

For us to successfully sample binary output values using the Bernoulli
distribution, we first need to derive the probability p from the preactivation
a (the output of a neuron before the application of the activation function
a(x) = ∑n

i=0 wixi + b, a : Rn → R). This can be achieved by applying some
function F that compresses the unbounded preactivation space to the interval
[0; 1]. In this thesis, we chose F as:

F (a) = tanh(a) + 1
2

Note that the F function can be looked upon as the cumulative distribution
function (cdf) of the output probability distribution. This is described in
detail in [6], where they opt to use the logistic sigmoid function as it is the
mathematically sound cdf function when dealing with logistic noise. However,
for the purposes of this thesis, it is sufficient to use F .

Combining the previously described mapping and the cdf function F , we
can derive the final Bernoulli distribution to sample the desired binary output.

o ∼ 2Bernoulli(F (a)) − 1

18

.................................6.3. Binarizing the Output

−4 −2 2 4

−1

1

a

y

F (a)
sigmoid(a)

Figure 6.1: The graph of F and the logistic sigmoid function.

where F (a) functions as the parameter p of the distribution.
When trying to take the gradient of this distribution during backpropaga-

tion, we will use the results of [6], where they artificially set the derivative of
the loss function with respect to o.

∂L
∂a

:= 2diag(F ′(a))∂L
∂o

19

20

Chapter 7
Regularization

The regularization approach circumvents the issues listed above, such as the
non-informative gradient and the discrete weight space, by addressing the
task in a continuous space rather than in the assigned discrete space. It
then penalizes the network for deviating from the discontinuous (ternary and
binary) solutions. This adjustment creates a new, relaxed (less constrained)
task that is solvable with standard loss minimization techniques.

In our scenario, we’ll loosen the two constraints provided: allowing the
weight to be real rather than ternary, and substituting the binary activation
function in each layer with the hyperbolic tangent. This adjustment makes
both aspects continuous, thus allowing for the utilization of gradient descent
optimization. In this context, we will refer to the network obtained from
the original task as "discrete" and to the one acquired from the continuous
surrogate as "smooth," since it resembles continuousness.

As shown in a previous chapter, the conversion between the smooth and
the discrete models is quite drastic and leads to an immense drop in accuracy.
However, if we train the model by rewarding it for getting closer to a discrete
solution, we can significantly reduce the loss in precision post-conversion. In
the first section of this chapter, we will cover how to adjust the objective
function of the network for us to be able to manipulate the training process.
We will then introduce "regularizer" functions that help navigate the net-
work towards a solution that better satisfies the given constraints and thus
smoothens the conversion.

Afterwards, we will address how to adjust the learning tendencies using a
regularizer strength schedule, that radically modifies the regularizer strengths
over time in the hope of finding the best possible local minima.

Finally, we will describe how to set up the conversion process of the smooth
model to the discrete one, by optimizing the thresholds of the quantization
function, that is used for the transformation. This last part is a crucial
component of the regularization method, and has a great potential to increase
the final test accuracy.

21

7. Regularization
7.1 The Objective Function

The original problem can be defined as:

min
W

L(f(X, W), Y)

s.t. ρi(W) = 0, i ∈ {1, 2, . . . , n}
(7.1)

where L is the original loss function, n is the number of constraints, and ρi is a
function that measures how well fulfilled is the corresponding i-th constraint,
in the context of this article, we will call these functions "regularizers".

This novel task can be looked upon as a constrained optimization problem
and, as such, can be solved by applying the method of Lagrange multipliers.
The solution can be than obtained by solving the following problem:

min
W

max
λ

L(f(X, W), Y) +
n∑

i=1
λiρi(W) (7.2)

where λ is the vector of Lagrange multipliers, where each element λi ≥ 0
corresponds to the respective constraint. For the purposes of this project, we
will refer to these lambdas as the "strengths" of the regularizers.

Since we Now we can set this obtained Lagrangian function as the new
"loss" function (also referred to as the objective function) of the network.

J = L(f(X, W), Y) +
n∑

i=1
λiρi(W)

This set-up allows the network not only to optimize the loss but also to
move towards satisfying the given constraints, ultimately enhancing accuracy
post-conversion.

7.2 The Regularizer Functions

We will define a ”regularizer” as a function ρ, which measures how "well sat-
isfied" a given constraint is. The inputs of the regularizer function encompass
any parameters of the neural network that we want to control, in our case
either f , W, X, and/or Y. We also want this function to have some reasonable
properties such as non-negativity for all inputs and for it to be equal to zero
when the condition is fully fulfilled. In our scenario, a regularizer will be the
mean of the "nearest solution distance" function applied on the weights or on
the activation function.

7.3 The Nearest Solution Distance (NSD)

For the regularizers to be able to successfully navigate the weight space, we
require a function that quantifies the distance between the input and the

22

..........................7.3. The Nearest Solution Distance (NSD)

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

N
SD

(x
)

(a) : K = {−1; 1}

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

x

N
SD

(x
)

(b) : K = {−1; 0; 1}

Figure 7.1: Plots of the NSD function for different target sets K.

closest desired solution (in our case, either binary or ternary). We will refer
to it as the "nearest solution distance" function, denoted as NSD : R → R:

NSD(x) = min
k∈K

|x − k|

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x

N
SD

(x
)p

p = 0.5
p = 1.0
p = 2.0
p = 10.0

(a) : K = {−1; 1}

−1 0 1
0

0.2

0.4

0.6

0.8

1

x

N
SD

(x
)p

p = 0.5
p = 1.0
p = 2.0
p = 10.0

(b) : K = {−1; 0; 1}

Figure 7.2: Plots of the NSD function raised to a power p for different target
sets K.

NSD(x) =
{

mink∈K |x − k| K = {−1; 1}
2 mink∈K |x − k| K = {−1; 0; 1}

(7.3)

where K is a set of all the solutions, in our case either {−1; 1} or {−1; 0; 1}.
Notice that when taking the distance from the ternary solution, the function
values are scaled down by 2. Hence, we will normalize NSD when K =
{−1; 0; 1} like so:

This modification ensures that all the peaks (x = 0 or x = ±0.5) have
function value of 1. Without this adjustment, one distance would output
larger values, giving it higher priority during training.

23

7. Regularization
7.4 Weight Regularizer

For a neural network to be expressible by logical rules, it needs to have ternary
weights. To achieve this goal, we will create a regularizer function that will
award the network for getting closer to having ternary weights.

According to [2], the full-precision (continuous) weight space is too vast to
find an appropriate ternary solution, hence, they suggest compressing it by
applying the tanh function to each weight. This adjustment simplifies the
process of finding a ternary solution, as the weights now fall within the range
of [−1, 1]. We can denote the full-precision parameters of the network as θ:

W = tanh(θ)

Then we can set the regularizer function ρ1 to the mean over all the weight’s
nearest distances from the ternary solution K = {−1; 0; 1}:

ρ1(W) = ρ1(tanh(θ)) = 1
L

L∑
i=1

1
NiMi

Ni∑
j=1

Mi∑
k=1

NSD(tanh(θ))p

where L is the number of layers, Ni is the number of neurons in the i-th
layer, Mi is the size of each neuron in the i-th layer, W are the weights of the
network, θ are the compressed weights, NSD is the "nearest solution distance"
function, and p is a hyperparameter.

7.5 Activation Regularizer

The constraints of this task require the output of each layer to be binary,
which effectively means that the activation of each layer must be the sign
function. Our regularization method substitutes tanh as the activation for
each layer, taking advantage of the properties of hyperbolic tangent showed
above. We set the regularizer as the average of the sum of the distances
between the output of each layer and the nearest binary solution (NSD).

ρ2(F, X) = 1
NL

∑
x∈X

NSD(F1(x))p + . . . + NSD(FL ◦ . . . ◦ F2 ◦ F1(x))p

where N is the size of the dataset X, L is the number of layers, and F =
(F1, F2, . . . , FL) is the ordered list of all the layer output functions, where Fi

corresponds to the output function of i-th layer, NSD is the nearest solution
distance from the binary solution (K = {−1; 1}), and p is a hyperparameter.

7.6 Regularizer Strength Schedule

By redefining the loss function of the neural network, we gain the ability to
regulate the regularizer strengths during the training phase. Through this
manipulation, we can assign how important each goal is at any given moment

24

............................. 7.7. Implementation of a Schedule

and, thus, on what the minimization algorithm should focus. This process is
called "regularizer strength scheduling", and it is a crucial tool that makes
training neural networks more efficient.

In this project we used the regularizer strength schedule suggested in [4].
This schedule aims to dynamically adjust the regularizer strength during
training using a cosine function. Each cycle begins with a high regularizer
strength, which is then gradually reduced to its minimum value, with cycles
possibly having different limits and lengths. The purpose of this schedule is

Figure 7.3: Example of an implementation of the schedule during training. Note
that we can artificially set the minimum and maximum values for each strength,
thus manipulating what the minimization algorithm should focus on. We can
also choose whether we will update the λs at all.

to enable the minimization algorithm to escape getting stuck in local minima,
by applying drastic changes to the regularizer strength.

The formula for obtaining the regularizer strength in the Tcur epoch of the
i-th cycle as described in [4] goes as follows:

λt = λmin + 1
2(λi

max − λi
min)(1 + cos(Tcur

Ti
π))

where λi
max and λi

min are the limits for λ of the i-th cycle, Ti is the length of
the i-th cycle. They also suggest to initially start with low Ti and increase it
by a factor of Tmult at every restart.

7.7 Implementation of a Schedule

Since we are dealing with two different regularizers, we need a strength value
for each of them. This makes the use of schedules more difficult since, for
example, the constraints might be contrary to some extent, and thus the

25

7. Regularization
minimization algorithm might have a hard time satisfying both of them
simultaneously. In this section we will share a few techniques that can help
us overcome any potential issues that arise during implementation of the
schedule.

We can begin the training process with both regularizer strengths set to
zero, thus allowing the network to first learn the task without any constraints.
It is also not necessary to update both regularizers at the same time, we can
set one to zero and focus solely on the other.

Another technique is to normalize the limits of each λ by setting the
minimum to 0, and the maximum to the loss of the network divided by the
value of the regularizer.

λmax = L(f(X, W), Y)
ρ(W)

λmin = 0

This sets the maximum value of the regularizer strength to the loss of the
network. We can then multiply the λmax by some factor to prioritize it
proportionally to the loss.

7.8 Conversion to Discrete

After the training of the continuous model is finished, it must be converted to
its discrete counterpart by applying the quant function on the full-precision
weights, and the signb function on the output of each neuron (the signb and
quant functions are both introduced in the DSTE chapter).

Since the continuous network is always going to be more precise, this process
always lowers the final accuracy. However, the conversion procedure depends
on the parameters t1,2 of the quant function, and by their optimization we
can boost the ultimate accuracy by a few percentage points.

We propose to search for the optimal values t1,2 that maximize the accuracy
of the discrete model on the training dataset. We can do this by using a grid
or random search. Note that at this point, the optimal thresholds might not
be symmetrical, however their absolute values should be close to each others.
We can simplify this task by searching solely for the symmetrical thresholds,
i.e. t1 = −t2.

26

................................ 7.8. Conversion to Discrete

Figure 7.4: Results of threshold optimization, where t1 = −t2. Note that
the threshold values were originally set to ±0.5, thus this maximization had
nonnegligible impact of 2 percent increase in accuracy.

27

28

Chapter 8
Experimentation Section

8.1 Datasets

In thesis, we opted to choose 3 distinct datasets, MNIST, Wine, and Flower
to evaluate the performance of the proposed methods.

The MNIST dataset contains handwritten digits, each 28x28 pixels, labeled
from 0 to 9. For the purposes of converting the network to a set of logical
expressions, we are not interested in using convolutional networks, thus we
can flatten the input image to a vector of 784 elements. For the procedure to
work, we need to convert the dataset to a binary format. Since the values of
MNIST are in range [0;1], we can round them to the nearest integer.

The Wine dataset consists of 178 samples of Italian wine, each characterized
by 13 features and classified into 3 categories. The Flower dataset, introduced
in [5], is a toy dataset where the input comprises points arranged in a
symmetrical, non-linear shape resembling a flower. The objective is to classify
each "leaf" into one of 8 classes.

Since the range of features of both Wine and Flower is not bounded to
[0;1], we cannot use simple rounding to make them binary. We need to apply
the feature quantizer function introduced in earlier chapter. We used total of
10 bins for each dataset.

Final step of data augmentation is to use the one-hot encoding for the
labels, since we are solving a classification problem.

8.2 Training Details

When testing the proposed methods, we used the AdaBelief optimizer with
learning rate of 0.001, and cross-entropy as the loss function. We trained the
networks for 40 epochs on MNIST and for 400 epochs on Wine and Flower,
since they contain fewer samples.

Both the DSTE and SSTE are implemented as described earlier. The
regularization model has both powers p of the NSD functions set to 1, and the
threshold conversion optimization was applied after the training to enhance
the network’s performance.

29

8. Experimentation Section................................
MNIST Wine Flower

problem Train Test Train Test Train Test
DSTE .964 .941 .930 .757 .992 .989
SSTE .850 .854 .597 .636 .853 .853
Regularization .840 .841 .712 .737 .966 .970
Dense .994 .975 .869 .895 .954 .960

Table 8.1: Results of the proposed methods applied on the three datasets.

Dense is classical neural network from the library Flux, without any modi-
fications, with the hyperbolic tangent as the activation function.

8.3 Comparing the Results

After evaluating each method on all the datasets, we can conclude that the
DSTE method emerges as the top performer among the methods described
in this thesis. Remarkably, it surpasses the reference model at the Wine
and Flower dataset (this might be due the fact that that we applied feature
quantizer on the data beforehand).

We believe that the regularization approach has the greatest potential
among all the proposed methods. However, since it has a lot of hyperparam-
eters, optimizing it demands significant time and resources. Perhaps, with
different configuration, this method could perform much better. It also seems
to be doing significantly better on the Flower dataset where it is comparable
to the reference model.

Out of all the methods, our implementation of the SSTE seems to be
the least promising. Other stochastic methods may yield better results, for
example the PSA method introduced in [6] has potential for improved results.

30

Chapter 9
Conclusion

In this thesis, we have addressed a fundamental limitation of traditional
neural networks: their lack of interpretability. We describe a possible solution
to this issue, binary-ternary neural network.

The binary-ternary neural networks characteristics allow the entire network
to be represented as a set of logical propositions. This transformation renders
the network’s decision-making process transparent and understandable for
humans, thus making it suitable for applications where accountability and
clear explanations are needed.

However, the constraints of binary-ternary neural networks pose grave
problems for the utilization of traditional learning algorithms. To overcome
these challenges, this thesis describes and compares three unique methods
that aim on circumventing the posed issues.

We evaluated these approaches on three diverse datasets, and we have
concluded that the deterministic straight through estimator method per-
forms the best on all the datasets, for certain tasks even outperforming an
unconstrained model.

We believe that binary-ternary neural networks have great potential in
many fields of computer science and beyond. Although their accuracy is lower
than that of traditional models, we are certain that their ability to provide
clear and interpretable explanations compensates for this limitation.

31

32

Bibliography

[1] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D Lane, and Yarin
Gal. An empirical study of binary neural networks’ optimisation. In
International conference on learning representations, 2018.

[2] Xiang Deng and Zhongfei Zhang. An embarrassingly simple approach to
training ternary weight networks. arXiv preprint arXiv:2011.00580, 2020.

[3] Armin Hadžić. Extracting logic rules from neural networks with discrete
weights, 2024.

[4] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with
warm restarts, 2017.

[5] Tomas Pevny, Vasek Smidl, Martin Trapp, Ondrej Polacek, and Tomas
Oberhuber. Sum-product-transform networks: Exploiting symmetries
using invertible transformations, 2020.

[6] Alexander Shekhovtsov and Viktor Yanush. Reintroducing straight-
through estimators as principled methods for stochastic binary networks.
In Christian Bauckhage, Juergen Gall, and Alexander Schwing, editors,
Pattern Recognition, pages 111–126, Cham, 2021. Springer International
Publishing.

33

	Introduction
	Definition of Binary-Ternary Neural Network

	Background
	The Binary Sign Function
	The Hyperbolic Tangent Function
	Batch Normalization

	Converting to Logical Expressions
	Single Neuron to Logic
	Generalization for the whole Network
	Data Quantization

	Training and its Challenges
	Deterministic Straight Through Estimator
	Quantizing the Weights and the Output
	Computing Gradients

	Stochastic Straight Through Estimator
	Bernoulli Distribution
	Obtaining the Ternary Weights
	Binarizing the Output

	Regularization
	The Objective Function
	The Regularizer Functions
	The Nearest Solution Distance (NSD)
	Weight Regularizer
	Activation Regularizer
	Regularizer Strength Schedule
	Implementation of a Schedule
	Conversion to Discrete

	Experimentation Section
	Datasets
	Training Details
	Comparing the Results

	Conclusion
	Bibliography

